Metamath Proof Explorer


Theorem ncvspds

Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by AV, 13-Oct-2021)

Ref Expression
Hypotheses ncvspds.n N=normG
ncvspds.x X=BaseG
ncvspds.p +˙=+G
ncvspds.d D=distG
ncvspds.s ·˙=G
Assertion ncvspds GNrmVecℂVecAXBXADB=NA+˙-1·˙B

Proof

Step Hyp Ref Expression
1 ncvspds.n N=normG
2 ncvspds.x X=BaseG
3 ncvspds.p +˙=+G
4 ncvspds.d D=distG
5 ncvspds.s ·˙=G
6 elin GNrmVecℂVecGNrmVecGℂVec
7 nvcnlm GNrmVecGNrmMod
8 nlmngp GNrmModGNrmGrp
9 7 8 syl GNrmVecGNrmGrp
10 9 adantr GNrmVecGℂVecGNrmGrp
11 6 10 sylbi GNrmVecℂVecGNrmGrp
12 eqid -G=-G
13 1 2 12 4 ngpds GNrmGrpAXBXADB=NA-GB
14 11 13 syl3an1 GNrmVecℂVecAXBXADB=NA-GB
15 id GℂVecGℂVec
16 15 cvsclm GℂVecGCMod
17 6 16 simplbiim GNrmVecℂVecGCMod
18 eqid ScalarG=ScalarG
19 2 3 12 18 5 clmvsubval GCModAXBXA-GB=A+˙-1·˙B
20 17 19 syl3an1 GNrmVecℂVecAXBXA-GB=A+˙-1·˙B
21 20 fveq2d GNrmVecℂVecAXBXNA-GB=NA+˙-1·˙B
22 14 21 eqtrd GNrmVecℂVecAXBXADB=NA+˙-1·˙B