Metamath Proof Explorer


Theorem ne0gt0

Description: A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007)

Ref Expression
Assertion ne0gt0 A0AA00<A

Proof

Step Hyp Ref Expression
1 0re 0
2 lttri2 A0A0A<00<A
3 1 2 mpan2 AA0A<00<A
4 3 adantr A0AA0A<00<A
5 lenlt 0A0A¬A<0
6 1 5 mpan A0A¬A<0
7 6 biimpa A0A¬A<0
8 biorf ¬A<00<AA<00<A
9 7 8 syl A0A0<AA<00<A
10 4 9 bitr4d A0AA00<A