Metamath Proof Explorer


Theorem negcncfg

Description: The opposite of a continuous function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis negcncfg.1 φxAB:Acn
Assertion negcncfg φxAB:Acn

Proof

Step Hyp Ref Expression
1 negcncfg.1 φxAB:Acn
2 df-neg B=0B
3 2 a1i φxAB=0B
4 3 mpteq2dva φxAB=xA0B
5 eqid x0=x0
6 0cn 0
7 ssidd 0
8 id 00
9 7 8 7 constcncfg 0x0:cn
10 6 9 mp1i φx0:cn
11 cncfrss xAB:AcnA
12 1 11 syl φA
13 ssidd φ
14 6 a1i φxA0
15 5 10 12 13 14 cncfmptssg φxA0:Acn
16 15 1 subcncf φxA0B:Acn
17 4 16 eqeltrd φxAB:Acn