Metamath Proof Explorer


Theorem negeu

Description: Existential uniqueness of negatives. Theorem I.2 of Apostol p. 18. (Contributed by NM, 22-Nov-1994) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion negeu AB∃!xA+x=B

Proof

Step Hyp Ref Expression
1 cnegex AyA+y=0
2 1 adantr AByA+y=0
3 simpl yA+y=0y
4 simpr ABB
5 addcl yBy+B
6 3 4 5 syl2anr AByA+y=0y+B
7 simplrr AByA+y=0xA+y=0
8 7 oveq1d AByA+y=0xA+y+B=0+B
9 simplll AByA+y=0xA
10 simplrl AByA+y=0xy
11 simpllr AByA+y=0xB
12 9 10 11 addassd AByA+y=0xA+y+B=A+y+B
13 11 addlidd AByA+y=0x0+B=B
14 8 12 13 3eqtr3rd AByA+y=0xB=A+y+B
15 14 eqeq2d AByA+y=0xA+x=BA+x=A+y+B
16 simpr AByA+y=0xx
17 10 11 addcld AByA+y=0xy+B
18 9 16 17 addcand AByA+y=0xA+x=A+y+Bx=y+B
19 15 18 bitrd AByA+y=0xA+x=Bx=y+B
20 19 ralrimiva AByA+y=0xA+x=Bx=y+B
21 reu6i y+BxA+x=Bx=y+B∃!xA+x=B
22 6 20 21 syl2anc AByA+y=0∃!xA+x=B
23 2 22 rexlimddv AB∃!xA+x=B