Metamath Proof Explorer


Theorem neicvgf1o

Description: If neighborhood and convergent functions are related by operator H , it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
neicvg.d D = P B
neicvg.f F = 𝒫 B O B
neicvg.g G = B O 𝒫 B
neicvg.h H = F D G
neicvg.r φ N H M
Assertion neicvgf1o φ H : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B

Proof

Step Hyp Ref Expression
1 neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
2 neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 neicvg.d D = P B
4 neicvg.f F = 𝒫 B O B
5 neicvg.g G = B O 𝒫 B
6 neicvg.h H = F D G
7 neicvg.r φ N H M
8 3 6 7 neicvgbex φ B V
9 8 pwexd φ 𝒫 B V
10 1 9 8 4 fsovf1od φ F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
11 2 3 8 dssmapf1od φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
12 1 8 9 5 fsovf1od φ G : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B
13 f1oco D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B G : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B D G : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B
14 11 12 13 syl2anc φ D G : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B
15 f1oco F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B D G : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B F D G : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B
16 10 14 15 syl2anc φ F D G : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B
17 f1oeq1 H = F D G H : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B F D G : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B
18 6 17 ax-mp H : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B F D G : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B
19 16 18 sylibr φ H : 𝒫 𝒫 B B 1-1 onto 𝒫 𝒫 B B