Metamath Proof Explorer


Theorem neindisj

Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis neips.1 X=J
Assertion neindisj JTopSXPclsJSNneiJPNS

Proof

Step Hyp Ref Expression
1 neips.1 X=J
2 1 clsss3 JTopSXclsJSX
3 2 sseld JTopSXPclsJSPX
4 3 impr JTopSXPclsJSPX
5 1 isneip JTopPXNneiJPNXgJPggN
6 4 5 syldan JTopSXPclsJSNneiJPNXgJPggN
7 3anass JTopSXPclsJSJTopSXPclsJS
8 1 clsndisj JTopSXPclsJSgJPggS
9 7 8 sylanbr JTopSXPclsJSgJPggS
10 9 anassrs JTopSXPclsJSgJPggS
11 10 adantllr JTopSXPclsJSNXgJPggS
12 11 adantrr JTopSXPclsJSNXgJPggNgS
13 ssdisj gNNS=gS=
14 13 ex gNNS=gS=
15 14 necon3d gNgSNS
16 15 ad2antll JTopSXPclsJSNXgJPggNgSNS
17 12 16 mpd JTopSXPclsJSNXgJPggNNS
18 17 rexlimdva2 JTopSXPclsJSNXgJPggNNS
19 18 expimpd JTopSXPclsJSNXgJPggNNS
20 6 19 sylbid JTopSXPclsJSNneiJPNS
21 20 exp32 JTopSXPclsJSNneiJPNS
22 21 imp43 JTopSXPclsJSNneiJPNS