Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neips.1 | |
|
Assertion | neindisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | |
|
2 | 1 | clsss3 | |
3 | 2 | sseld | |
4 | 3 | impr | |
5 | 1 | isneip | |
6 | 4 5 | syldan | |
7 | 3anass | |
|
8 | 1 | clsndisj | |
9 | 7 8 | sylanbr | |
10 | 9 | anassrs | |
11 | 10 | adantllr | |
12 | 11 | adantrr | |
13 | ssdisj | |
|
14 | 13 | ex | |
15 | 14 | necon3d | |
16 | 15 | ad2antll | |
17 | 12 16 | mpd | |
18 | 17 | rexlimdva2 | |
19 | 18 | expimpd | |
20 | 6 19 | sylbid | |
21 | 20 | exp32 | |
22 | 21 | imp43 | |