Metamath Proof Explorer


Theorem neival

Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis neifval.1 X=J
Assertion neival JTopSXneiJS=v𝒫X|gJSggv

Proof

Step Hyp Ref Expression
1 neifval.1 X=J
2 1 neifval JTopneiJ=x𝒫Xv𝒫X|gJxggv
3 2 fveq1d JTopneiJS=x𝒫Xv𝒫X|gJxggvS
4 3 adantr JTopSXneiJS=x𝒫Xv𝒫X|gJxggvS
5 eqid x𝒫Xv𝒫X|gJxggv=x𝒫Xv𝒫X|gJxggv
6 cleq1lem x=SxggvSggv
7 6 rexbidv x=SgJxggvgJSggv
8 7 rabbidv x=Sv𝒫X|gJxggv=v𝒫X|gJSggv
9 1 topopn JTopXJ
10 elpw2g XJS𝒫XSX
11 9 10 syl JTopS𝒫XSX
12 11 biimpar JTopSXS𝒫X
13 pwexg XJ𝒫XV
14 rabexg 𝒫XVv𝒫X|gJSggvV
15 9 13 14 3syl JTopv𝒫X|gJSggvV
16 15 adantr JTopSXv𝒫X|gJSggvV
17 5 8 12 16 fvmptd3 JTopSXx𝒫Xv𝒫X|gJxggvS=v𝒫X|gJSggv
18 4 17 eqtrd JTopSXneiJS=v𝒫X|gJSggv