Metamath Proof Explorer


Theorem nelun

Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Assertion nelun A = B C ¬ X A ¬ X B ¬ X C

Proof

Step Hyp Ref Expression
1 eleq2 A = B C X A X B C
2 elun X B C X B X C
3 1 2 bitrdi A = B C X A X B X C
4 3 notbid A = B C ¬ X A ¬ X B X C
5 ioran ¬ X B X C ¬ X B ¬ X C
6 4 5 bitrdi A = B C ¬ X A ¬ X B ¬ X C