Metamath Proof Explorer


Theorem nfsb4t

Description: A variable not free in a proposition remains so after substitution in that proposition with a distinct variable (closed form of nfsb4 ). Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 7-Apr-2004) (Revised by Mario Carneiro, 4-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Assertion nfsb4t xzφ¬zz=yzyxφ

Proof

Step Hyp Ref Expression
1 sbequ12 x=yφyxφ
2 1 sps xx=yφyxφ
3 2 drnf2 xx=yzφzyxφ
4 3 biimpd xx=yzφzyxφ
5 4 spsd xx=yxzφzyxφ
6 5 impcom xzφxx=yzyxφ
7 6 a1d xzφxx=y¬zz=yzyxφ
8 nfnf1 zzφ
9 8 nfal zxzφ
10 nfnae z¬xx=y
11 9 10 nfan zxzφ¬xx=y
12 nfa1 xxzφ
13 nfnae x¬xx=y
14 12 13 nfan xxzφ¬xx=y
15 sp xzφzφ
16 15 adantr xzφ¬xx=yzφ
17 nfsb2 ¬xx=yxyxφ
18 17 adantl xzφ¬xx=yxyxφ
19 1 a1i xzφ¬xx=yx=yφyxφ
20 11 14 16 18 19 dvelimdf xzφ¬xx=y¬zz=yzyxφ
21 7 20 pm2.61dan xzφ¬zz=yzyxφ