Metamath Proof Explorer


Theorem nmogelb

Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 N=SnormOpT
nmofval.2 V=BaseS
nmofval.3 L=normS
nmofval.4 M=normT
Assertion nmogelb SNrmGrpTNrmGrpFSGrpHomTA*ANFr0+∞xVMFxrLxAr

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 nmofval.2 V=BaseS
3 nmofval.3 L=normS
4 nmofval.4 M=normT
5 1 2 3 4 nmoval SNrmGrpTNrmGrpFSGrpHomTNF=supr0+∞|xVMFxrLx*<
6 5 breq2d SNrmGrpTNrmGrpFSGrpHomTANFAsupr0+∞|xVMFxrLx*<
7 ssrab2 r0+∞|xVMFxrLx0+∞
8 icossxr 0+∞*
9 7 8 sstri r0+∞|xVMFxrLx*
10 infxrgelb r0+∞|xVMFxrLx*A*Asupr0+∞|xVMFxrLx*<sr0+∞|xVMFxrLxAs
11 9 10 mpan A*Asupr0+∞|xVMFxrLx*<sr0+∞|xVMFxrLxAs
12 breq2 s=rAsAr
13 12 ralrab2 sr0+∞|xVMFxrLxAsr0+∞xVMFxrLxAr
14 11 13 bitrdi A*Asupr0+∞|xVMFxrLx*<r0+∞xVMFxrLxAr
15 6 14 sylan9bb SNrmGrpTNrmGrpFSGrpHomTA*ANFr0+∞xVMFxrLxAr