Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmofval.1 | |
|
nmofval.2 | |
||
nmofval.3 | |
||
nmofval.4 | |
||
Assertion | nmolb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | |
|
2 | nmofval.2 | |
|
3 | nmofval.3 | |
|
4 | nmofval.4 | |
|
5 | elrege0 | |
|
6 | 1 2 3 4 | nmoval | |
7 | ssrab2 | |
|
8 | icossxr | |
|
9 | 7 8 | sstri | |
10 | infxrcl | |
|
11 | 9 10 | mp1i | |
12 | 6 11 | eqeltrd | |
13 | 12 | xrleidd | |
14 | 1 2 3 4 | nmogelb | |
15 | 12 14 | mpdan | |
16 | 13 15 | mpbid | |
17 | oveq1 | |
|
18 | 17 | breq2d | |
19 | 18 | ralbidv | |
20 | breq2 | |
|
21 | 19 20 | imbi12d | |
22 | 21 | rspccv | |
23 | 16 22 | syl | |
24 | 5 23 | biimtrrid | |
25 | 24 | 3impib | |