Metamath Proof Explorer


Theorem nmolb

Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 N=SnormOpT
nmofval.2 V=BaseS
nmofval.3 L=normS
nmofval.4 M=normT
Assertion nmolb SNrmGrpTNrmGrpFSGrpHomTA0AxVMFxALxNFA

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 nmofval.2 V=BaseS
3 nmofval.3 L=normS
4 nmofval.4 M=normT
5 elrege0 A0+∞A0A
6 1 2 3 4 nmoval SNrmGrpTNrmGrpFSGrpHomTNF=supr0+∞|xVMFxrLx*<
7 ssrab2 r0+∞|xVMFxrLx0+∞
8 icossxr 0+∞*
9 7 8 sstri r0+∞|xVMFxrLx*
10 infxrcl r0+∞|xVMFxrLx*supr0+∞|xVMFxrLx*<*
11 9 10 mp1i SNrmGrpTNrmGrpFSGrpHomTsupr0+∞|xVMFxrLx*<*
12 6 11 eqeltrd SNrmGrpTNrmGrpFSGrpHomTNF*
13 12 xrleidd SNrmGrpTNrmGrpFSGrpHomTNFNF
14 1 2 3 4 nmogelb SNrmGrpTNrmGrpFSGrpHomTNF*NFNFr0+∞xVMFxrLxNFr
15 12 14 mpdan SNrmGrpTNrmGrpFSGrpHomTNFNFr0+∞xVMFxrLxNFr
16 13 15 mpbid SNrmGrpTNrmGrpFSGrpHomTr0+∞xVMFxrLxNFr
17 oveq1 r=ArLx=ALx
18 17 breq2d r=AMFxrLxMFxALx
19 18 ralbidv r=AxVMFxrLxxVMFxALx
20 breq2 r=ANFrNFA
21 19 20 imbi12d r=AxVMFxrLxNFrxVMFxALxNFA
22 21 rspccv r0+∞xVMFxrLxNFrA0+∞xVMFxALxNFA
23 16 22 syl SNrmGrpTNrmGrpFSGrpHomTA0+∞xVMFxALxNFA
24 5 23 biimtrrid SNrmGrpTNrmGrpFSGrpHomTA0AxVMFxALxNFA
25 24 3impib SNrmGrpTNrmGrpFSGrpHomTA0AxVMFxALxNFA