Metamath Proof Explorer


Theorem nmopsetn0

Description: The set in the supremum of the operator norm definition df-nmop is nonempty. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopsetn0 normT0x|ynormy1x=normTy

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 norm0 norm0=0
3 0le1 01
4 2 3 eqbrtri norm01
5 eqid normT0=normT0
6 4 5 pm3.2i norm01normT0=normT0
7 fveq2 y=0normy=norm0
8 7 breq1d y=0normy1norm01
9 2fveq3 y=0normTy=normT0
10 9 eqeq2d y=0normT0=normTynormT0=normT0
11 8 10 anbi12d y=0normy1normT0=normTynorm01normT0=normT0
12 11 rspcev 0norm01normT0=normT0ynormy1normT0=normTy
13 1 6 12 mp2an ynormy1normT0=normTy
14 fvex normT0V
15 eqeq1 x=normT0x=normTynormT0=normTy
16 15 anbi2d x=normT0normy1x=normTynormy1normT0=normTy
17 16 rexbidv x=normT0ynormy1x=normTyynormy1normT0=normTy
18 14 17 elab normT0x|ynormy1x=normTyynormy1normT0=normTy
19 13 18 mpbir normT0x|ynormy1x=normTy