Metamath Proof Explorer


Theorem nn0eo

Description: A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020)

Ref Expression
Assertion nn0eo N 0 N 2 0 N + 1 2 0

Proof

Step Hyp Ref Expression
1 nn0z N 0 N
2 zeo N N 2 N + 1 2
3 1 2 syl N 0 N 2 N + 1 2
4 simpr N 0 N 2 N 2
5 nn0re N 0 N
6 nn0ge0 N 0 0 N
7 2re 2
8 7 a1i N 0 2
9 2pos 0 < 2
10 9 a1i N 0 0 < 2
11 divge0 N 0 N 2 0 < 2 0 N 2
12 5 6 8 10 11 syl22anc N 0 0 N 2
13 12 adantr N 0 N 2 0 N 2
14 elnn0z N 2 0 N 2 0 N 2
15 4 13 14 sylanbrc N 0 N 2 N 2 0
16 15 ex N 0 N 2 N 2 0
17 simpr N 0 N + 1 2 N + 1 2
18 peano2nn0 N 0 N + 1 0
19 18 nn0red N 0 N + 1
20 1red N 0 1
21 0le1 0 1
22 21 a1i N 0 0 1
23 5 20 6 22 addge0d N 0 0 N + 1
24 divge0 N + 1 0 N + 1 2 0 < 2 0 N + 1 2
25 19 23 8 10 24 syl22anc N 0 0 N + 1 2
26 25 adantr N 0 N + 1 2 0 N + 1 2
27 elnn0z N + 1 2 0 N + 1 2 0 N + 1 2
28 17 26 27 sylanbrc N 0 N + 1 2 N + 1 2 0
29 28 ex N 0 N + 1 2 N + 1 2 0
30 16 29 orim12d N 0 N 2 N + 1 2 N 2 0 N + 1 2 0
31 3 30 mpd N 0 N 2 0 N + 1 2 0