Metamath Proof Explorer


Theorem nn0ge2m1nn

Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 4-Jan-2020)

Ref Expression
Assertion nn0ge2m1nn N02NN1

Proof

Step Hyp Ref Expression
1 simpl N02NN0
2 1red N01
3 2re 2
4 3 a1i N02
5 nn0re N0N
6 2 4 5 3jca N012N
7 6 adantr N02N12N
8 simpr N02N2N
9 1lt2 1<2
10 8 9 jctil N02N1<22N
11 ltleletr 12N1<22N1N
12 7 10 11 sylc N02N1N
13 elnnnn0c NN01N
14 1 12 13 sylanbrc N02NN
15 nn1m1nn NN=1N1
16 14 15 syl N02NN=1N1
17 breq2 N=12N21
18 1re 1
19 18 3 ltnlei 1<2¬21
20 pm2.21 ¬2121N1
21 19 20 sylbi 1<221N1
22 9 21 ax-mp 21N1
23 17 22 syl6bi N=12NN1
24 23 adantld N=1N02NN1
25 ax-1 N1N02NN1
26 24 25 jaoi N=1N1N02NN1
27 16 26 mpcom N02NN1