| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0gsumfz.b |
|
| 2 |
|
nn0gsumfz.0 |
|
| 3 |
|
nn0gsumfz.g |
|
| 4 |
|
nn0gsumfz.f |
|
| 5 |
|
nn0gsumfz.y |
|
| 6 |
2
|
fvexi |
|
| 7 |
4 6
|
jctir |
|
| 8 |
|
fsuppmapnn0ub |
|
| 9 |
7 5 8
|
sylc |
|
| 10 |
|
eqidd |
|
| 11 |
|
simpr |
|
| 12 |
3
|
adantr |
|
| 13 |
4
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
|
eqid |
|
| 16 |
1 2 12 13 14 15
|
fsfnn0gsumfsffz |
|
| 17 |
16
|
imp |
|
| 18 |
13
|
adantr |
|
| 19 |
|
fz0ssnn0 |
|
| 20 |
|
elmapssres |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
|
eqeq1 |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
22 24
|
3anbi13d |
|
| 26 |
25
|
adantl |
|
| 27 |
21 26
|
rspcedv |
|
| 28 |
10 11 17 27
|
mp3and |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
reximdva |
|
| 31 |
9 30
|
mpd |
|