| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0gsumfz.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nn0gsumfz.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | nn0gsumfz.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | nn0gsumfz.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 5 |  | nn0gsumfz.y | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 6 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 7 | 4 6 | jctir | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐵  ↑m  ℕ0 )  ∧   0   ∈  V ) ) | 
						
							| 8 |  | fsuppmapnn0ub | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  ℕ0 )  ∧   0   ∈  V )  →  ( 𝐹  finSupp   0   →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 9 | 7 5 8 | sylc | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  →  𝐺  ∈  CMnd ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  →  𝐹  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  →  𝑠  ∈  ℕ0 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝐹  ↾  ( 0 ... 𝑠 ) )  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) | 
						
							| 16 | 1 2 12 13 14 15 | fsfnn0gsumfsffz | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 18 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  𝐹  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 19 |  | fz0ssnn0 | ⊢ ( 0 ... 𝑠 )  ⊆  ℕ0 | 
						
							| 20 |  | elmapssres | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  ℕ0 )  ∧  ( 0 ... 𝑠 )  ⊆  ℕ0 )  →  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 22 |  | eqeq1 | ⊢ ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  →  ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ↔  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  →  ( 𝐺  Σg  𝑓 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  →  ( ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 )  ↔  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) ) | 
						
							| 25 | 22 24 | 3anbi13d | ⊢ ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  →  ( ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) )  ↔  ( ( 𝐹  ↾  ( 0 ... 𝑠 ) )  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  ∧  𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) )  →  ( ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) )  ↔  ( ( 𝐹  ↾  ( 0 ... 𝑠 ) )  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) ) ) ) | 
						
							| 27 | 21 26 | rspcedv | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  ( ( ( 𝐹  ↾  ( 0 ... 𝑠 ) )  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 0 ... 𝑠 ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) ) | 
						
							| 28 | 10 11 17 27 | mp3and | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  ) )  →  ∃ 𝑓  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  →  ∃ 𝑓  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) ) | 
						
							| 30 | 29 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  →  ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) ) | 
						
							| 31 | 9 30 | mpd | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝑓  =  ( 𝐹  ↾  ( 0 ... 𝑠 ) )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝐹 ‘ 𝑥 )  =   0  )  ∧  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  𝑓 ) ) ) |