Metamath Proof Explorer


Theorem nn2ge

Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999)

Ref Expression
Assertion nn2ge ABxAxBx

Proof

Step Hyp Ref Expression
1 nnre AA
2 1 adantr ABA
3 nnre BB
4 3 adantl ABB
5 leid BBB
6 5 anim1ci BABABBB
7 3 6 sylan BABABBB
8 breq2 x=BAxAB
9 breq2 x=BBxBB
10 8 9 anbi12d x=BAxBxABBB
11 10 rspcev BABBBxAxBx
12 7 11 syldan BABxAxBx
13 12 adantll ABABxAxBx
14 leid AAA
15 14 anim1i ABAAABA
16 1 15 sylan ABAAABA
17 breq2 x=AAxAA
18 breq2 x=ABxBA
19 17 18 anbi12d x=AAxBxAABA
20 19 rspcev AAABAxAxBx
21 16 20 syldan ABAxAxBx
22 21 adantlr ABBAxAxBx
23 2 4 13 22 lecasei ABxAxBx