Metamath Proof Explorer


Theorem nndivdvds

Description: Strong form of dvdsval2 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion nndivdvds ABBAAB

Proof

Step Hyp Ref Expression
1 nnz BB
2 nnne0 BB0
3 nnz AA
4 3 adantr ABA
5 dvdsval2 BB0ABAAB
6 1 2 4 5 syl2an23an ABBAAB
7 6 anbi1d ABBA0<ABAB0<AB
8 nnre AA
9 8 adantr ABA
10 nnre BB
11 10 adantl ABB
12 nngt0 A0<A
13 12 adantr AB0<A
14 nngt0 B0<B
15 14 adantl AB0<B
16 9 11 13 15 divgt0d AB0<AB
17 16 biantrud ABBABA0<AB
18 elnnz ABAB0<AB
19 18 a1i ABABAB0<AB
20 7 17 19 3bitr4d ABBAAB