Metamath Proof Explorer


Theorem nngt0

Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999)

Ref Expression
Assertion nngt0 A0<A

Proof

Step Hyp Ref Expression
1 nnre AA
2 nnge1 A1A
3 0lt1 0<1
4 0re 0
5 1re 1
6 ltletr 01A0<11A0<A
7 4 5 6 mp3an12 A0<11A0<A
8 3 7 mpani A1A0<A
9 1 2 8 sylc A0<A