Metamath Proof Explorer


Theorem nnindf

Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018)

Ref Expression
Hypotheses nnindf.x yφ
nnindf.1 x=1φψ
nnindf.2 x=yφχ
nnindf.3 x=y+1φθ
nnindf.4 x=Aφτ
nnindf.5 ψ
nnindf.6 yχθ
Assertion nnindf Aτ

Proof

Step Hyp Ref Expression
1 nnindf.x yφ
2 nnindf.1 x=1φψ
3 nnindf.2 x=yφχ
4 nnindf.3 x=y+1φθ
5 nnindf.4 x=Aφτ
6 nnindf.5 ψ
7 nnindf.6 yχθ
8 1nn 1
9 2 elrab 1x|φ1ψ
10 8 6 9 mpbir2an 1x|φ
11 elrabi yx|φy
12 peano2nn yy+1
13 12 a1d yyy+1
14 13 7 anim12d yyχy+1θ
15 3 elrab yx|φyχ
16 4 elrab y+1x|φy+1θ
17 14 15 16 3imtr4g yyx|φy+1x|φ
18 11 17 mpcom yx|φy+1x|φ
19 18 rgen yx|φy+1x|φ
20 nfcv _y
21 1 20 nfrabw _yx|φ
22 nfcv _wx|φ
23 nfv wy+1x|φ
24 21 nfel2 yw+1x|φ
25 oveq1 y=wy+1=w+1
26 25 eleq1d y=wy+1x|φw+1x|φ
27 21 22 23 24 26 cbvralfw yx|φy+1x|φwx|φw+1x|φ
28 19 27 mpbi wx|φw+1x|φ
29 peano5nni 1x|φwx|φw+1x|φx|φ
30 10 28 29 mp2an x|φ
31 30 sseli AAx|φ
32 5 elrab Ax|φAτ
33 31 32 sylib AAτ
34 33 simprd Aτ