Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnindf.x | |
|
nnindf.1 | |
||
nnindf.2 | |
||
nnindf.3 | |
||
nnindf.4 | |
||
nnindf.5 | |
||
nnindf.6 | |
||
Assertion | nnindf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindf.x | |
|
2 | nnindf.1 | |
|
3 | nnindf.2 | |
|
4 | nnindf.3 | |
|
5 | nnindf.4 | |
|
6 | nnindf.5 | |
|
7 | nnindf.6 | |
|
8 | 1nn | |
|
9 | 2 | elrab | |
10 | 8 6 9 | mpbir2an | |
11 | elrabi | |
|
12 | peano2nn | |
|
13 | 12 | a1d | |
14 | 13 7 | anim12d | |
15 | 3 | elrab | |
16 | 4 | elrab | |
17 | 14 15 16 | 3imtr4g | |
18 | 11 17 | mpcom | |
19 | 18 | rgen | |
20 | nfcv | |
|
21 | 1 20 | nfrabw | |
22 | nfcv | |
|
23 | nfv | |
|
24 | 21 | nfel2 | |
25 | oveq1 | |
|
26 | 25 | eleq1d | |
27 | 21 22 23 24 26 | cbvralfw | |
28 | 19 27 | mpbi | |
29 | peano5nni | |
|
30 | 10 28 29 | mp2an | |
31 | 30 | sseli | |
32 | 5 | elrab | |
33 | 31 32 | sylib | |
34 | 33 | simprd | |