Metamath Proof Explorer


Theorem nnmcl

Description: Closure of multiplication of natural numbers. Proposition 8.17 of TakeutiZaring p. 63. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 20-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nnmcl AωBωA𝑜Bω

Proof

Step Hyp Ref Expression
1 oveq2 x=BA𝑜x=A𝑜B
2 1 eleq1d x=BA𝑜xωA𝑜Bω
3 2 imbi2d x=BAωA𝑜xωAωA𝑜Bω
4 oveq2 x=A𝑜x=A𝑜
5 4 eleq1d x=A𝑜xωA𝑜ω
6 oveq2 x=yA𝑜x=A𝑜y
7 6 eleq1d x=yA𝑜xωA𝑜yω
8 oveq2 x=sucyA𝑜x=A𝑜sucy
9 8 eleq1d x=sucyA𝑜xωA𝑜sucyω
10 nnm0 AωA𝑜=
11 peano1 ω
12 10 11 eqeltrdi AωA𝑜ω
13 nnacl A𝑜yωAωA𝑜y+𝑜Aω
14 13 expcom AωA𝑜yωA𝑜y+𝑜Aω
15 14 adantr AωyωA𝑜yωA𝑜y+𝑜Aω
16 nnmsuc AωyωA𝑜sucy=A𝑜y+𝑜A
17 16 eleq1d AωyωA𝑜sucyωA𝑜y+𝑜Aω
18 15 17 sylibrd AωyωA𝑜yωA𝑜sucyω
19 18 expcom yωAωA𝑜yωA𝑜sucyω
20 5 7 9 12 19 finds2 xωAωA𝑜xω
21 3 20 vtoclga BωAωA𝑜Bω
22 21 impcom AωBωA𝑜Bω