Metamath Proof Explorer


Theorem nnoddm1d2

Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnoddm1d2 N¬2NN+12

Proof

Step Hyp Ref Expression
1 nnz NN
2 oddp1d2 N¬2NN+12
3 1 2 syl N¬2NN+12
4 peano2nn NN+1
5 4 nnred NN+1
6 2re 2
7 6 a1i N2
8 nnre NN
9 1red N1
10 nngt0 N0<N
11 0lt1 0<1
12 11 a1i N0<1
13 8 9 10 12 addgt0d N0<N+1
14 2pos 0<2
15 14 a1i N0<2
16 5 7 13 15 divgt0d N0<N+12
17 16 anim1ci NN+12N+120<N+12
18 elnnz N+12N+120<N+12
19 17 18 sylibr NN+12N+12
20 19 ex NN+12N+12
21 nnz N+12N+12
22 20 21 impbid1 NN+12N+12
23 3 22 bitrd N¬2NN+12