Metamath Proof Explorer


Theorem nnsdomgOLD

Description: Obsolete version of nnsdomg as of 7-Jan-2025. (Contributed by NM, 15-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nnsdomgOLD ωVAωAω

Proof

Step Hyp Ref Expression
1 ssdomg ωVAωAω
2 ordom Ordω
3 ordelss OrdωAωAω
4 2 3 mpan AωAω
5 1 4 impel ωVAωAω
6 ominf ¬ωFin
7 ensym AωωA
8 breq2 x=AωxωA
9 8 rspcev AωωAxωωx
10 isfi ωFinxωωx
11 9 10 sylibr AωωAωFin
12 11 ex AωωAωFin
13 7 12 syl5 AωAωωFin
14 6 13 mtoi Aω¬Aω
15 14 adantl ωVAω¬Aω
16 brsdom AωAω¬Aω
17 5 15 16 sylanbrc ωVAωAω