Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nnwos.1 | |
|
Assertion | nnwos | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnwos.1 | |
|
2 | nfrab1 | |
|
3 | nfcv | |
|
4 | 2 3 | nnwof | |
5 | ssrab2 | |
|
6 | 5 | biantrur | |
7 | rabn0 | |
|
8 | 6 7 | bitr3i | |
9 | df-rex | |
|
10 | rabid | |
|
11 | df-ral | |
|
12 | 1 | elrab | |
13 | 12 | imbi1i | |
14 | impexp | |
|
15 | 13 14 | bitri | |
16 | 15 | albii | |
17 | 11 16 | bitri | |
18 | 10 17 | anbi12i | |
19 | 18 | exbii | |
20 | df-ral | |
|
21 | 20 | anbi2i | |
22 | anass | |
|
23 | 21 22 | bitr3i | |
24 | 23 | exbii | |
25 | df-rex | |
|
26 | 24 25 | bitr4i | |
27 | 9 19 26 | 3bitri | |
28 | 4 8 27 | 3imtr3i | |