Metamath Proof Explorer


Theorem noetasuplem3

Description: Lemma for noeta . Z is an upper bound for A . Part of Theorem 5.1 of Lipparini p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021)

Ref Expression
Hypotheses noetasuplem.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
noetasuplem.2 Z = S suc bday B dom S × 1 𝑜
Assertion noetasuplem3 A No A V B V X A X < s Z

Proof

Step Hyp Ref Expression
1 noetasuplem.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 noetasuplem.2 Z = S suc bday B dom S × 1 𝑜
3 simpl1 A No A V B V X A A No
4 simpl2 A No A V B V X A A V
5 simpr A No A V B V X A X A
6 1 nosupbnd1 A No A V X A X dom S < s S
7 3 4 5 6 syl3anc A No A V B V X A X dom S < s S
8 2 reseq1i Z dom S = S suc bday B dom S × 1 𝑜 dom S
9 resundir S suc bday B dom S × 1 𝑜 dom S = S dom S suc bday B dom S × 1 𝑜 dom S
10 df-res suc bday B dom S × 1 𝑜 dom S = suc bday B dom S × 1 𝑜 dom S × V
11 incom suc bday B dom S dom S = dom S suc bday B dom S
12 disjdif dom S suc bday B dom S =
13 11 12 eqtri suc bday B dom S dom S =
14 xpdisj1 suc bday B dom S dom S = suc bday B dom S × 1 𝑜 dom S × V =
15 13 14 ax-mp suc bday B dom S × 1 𝑜 dom S × V =
16 10 15 eqtri suc bday B dom S × 1 𝑜 dom S =
17 16 uneq2i S dom S suc bday B dom S × 1 𝑜 dom S = S dom S
18 un0 S dom S = S dom S
19 9 17 18 3eqtri S suc bday B dom S × 1 𝑜 dom S = S dom S
20 8 19 eqtri Z dom S = S dom S
21 1 nosupno A No A V S No
22 3 4 21 syl2anc A No A V B V X A S No
23 nofun S No Fun S
24 22 23 syl A No A V B V X A Fun S
25 funrel Fun S Rel S
26 resdm Rel S S dom S = S
27 24 25 26 3syl A No A V B V X A S dom S = S
28 20 27 syl5eq A No A V B V X A Z dom S = S
29 7 28 breqtrrd A No A V B V X A X dom S < s Z dom S
30 simp1 A No A V B V A No
31 30 sselda A No A V B V X A X No
32 1 2 noetasuplem1 A No A V B V Z No
33 32 adantr A No A V B V X A Z No
34 nodmon S No dom S On
35 22 34 syl A No A V B V X A dom S On
36 sltres X No Z No dom S On X dom S < s Z dom S X < s Z
37 31 33 35 36 syl3anc A No A V B V X A X dom S < s Z dom S X < s Z
38 29 37 mpd A No A V B V X A X < s Z