Metamath Proof Explorer


Theorem nomaxmo

Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Assertion nomaxmo SNo*xSyS¬x<sy

Proof

Step Hyp Ref Expression
1 sltso <sOrNo
2 soss SNo<sOrNo<sOrS
3 1 2 mpi SNo<sOrS
4 cnvso <sOrS<s-1OrS
5 3 4 sylib SNo<s-1OrS
6 somo <s-1OrS*xSyS¬y<s-1x
7 5 6 syl SNo*xSyS¬y<s-1x
8 vex yV
9 vex xV
10 8 9 brcnv y<s-1xx<sy
11 10 notbii ¬y<s-1x¬x<sy
12 11 ralbii yS¬y<s-1xyS¬x<sy
13 12 rmobii *xSyS¬y<s-1x*xSyS¬x<sy
14 7 13 sylib SNo*xSyS¬x<sy