Metamath Proof Explorer


Theorem nsnlpligALT

Description: Alternate version of nsnlplig using the predicate e/ instead of -. e. and whose proof is shorter. (Contributed by AV, 5-Dec-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nsnlpligALT GPligAG

Proof

Step Hyp Ref Expression
1 eqid G=G
2 1 l2p GPligAGaGbGabaAbA
3 elsni aAa=A
4 elsni bAb=A
5 eqtr3 a=Ab=Aa=b
6 eqneqall a=babAG
7 5 6 syl a=Ab=AabAG
8 3 4 7 syl2an aAbAabAG
9 8 impcom abaAbAAG
10 9 3impb abaAbAAG
11 10 a1i aGbGabaAbAAG
12 11 rexlimivv aGbGabaAbAAG
13 2 12 syl GPligAGAG
14 simpr GPligAGAG
15 13 14 pm2.61danel GPligAG