Metamath Proof Explorer


Theorem nssd

Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses nssd.1 φXA
nssd.2 φ¬XB
Assertion nssd φ¬AB

Proof

Step Hyp Ref Expression
1 nssd.1 φXA
2 nssd.2 φ¬XB
3 1 2 jca φXA¬XB
4 eleq1 x=XxAXA
5 eleq1 x=XxBXB
6 5 notbid x=X¬xB¬XB
7 4 6 anbi12d x=XxA¬xBXA¬XB
8 7 spcegv XAXA¬XBxxA¬xB
9 1 3 8 sylc φxxA¬xB
10 nss ¬ABxxA¬xB
11 9 10 sylibr φ¬AB