Metamath Proof Explorer


Theorem ntrk2imkb

Description: If an interior function is contracting, the interiors of disjoint sets are disjoint. Kuratowski's K2 axiom implies KB. Interior version. (Contributed by RP, 9-Jun-2021)

Ref Expression
Assertion ntrk2imkb s 𝒫 B I s s s 𝒫 B t 𝒫 B s t = I s I t =

Proof

Step Hyp Ref Expression
1 id s 𝒫 B I s s s 𝒫 B I s s
2 fveq2 s = t I s = I t
3 id s = t s = t
4 2 3 sseq12d s = t I s s I t t
5 4 cbvralvw s 𝒫 B I s s t 𝒫 B I t t
6 5 biimpi s 𝒫 B I s s t 𝒫 B I t t
7 raaanv s 𝒫 B t 𝒫 B I s s I t t s 𝒫 B I s s t 𝒫 B I t t
8 1 6 7 sylanbrc s 𝒫 B I s s s 𝒫 B t 𝒫 B I s s I t t
9 ss2in I s s I t t I s I t s t
10 9 adantr I s s I t t s t = I s I t s t
11 simpr I s s I t t s t = s t =
12 10 11 sseqtrd I s s I t t s t = I s I t
13 ss0 I s I t I s I t =
14 12 13 syl I s s I t t s t = I s I t =
15 14 ex I s s I t t s t = I s I t =
16 15 2ralimi s 𝒫 B t 𝒫 B I s s I t t s 𝒫 B t 𝒫 B s t = I s I t =
17 8 16 syl s 𝒫 B I s s s 𝒫 B t 𝒫 B s t = I s I t =