Metamath Proof Explorer


Theorem ntrkbimka

Description: If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021)

Ref Expression
Assertion ntrkbimka s𝒫Bt𝒫Bst=IsIt=I=

Proof

Step Hyp Ref Expression
1 inidm II=I
2 0elpw 𝒫B
3 ineq1 s=st=t
4 3 eqeq1d s=st=t=
5 fveq2 s=Is=I
6 5 ineq1d s=IsIt=IIt
7 6 eqeq1d s=IsIt=IIt=
8 4 7 imbi12d s=st=IsIt=t=IIt=
9 0in t=
10 pm5.5 t=t=IIt=IIt=
11 9 10 ax-mp t=IIt=IIt=
12 8 11 bitrdi s=st=IsIt=IIt=
13 fveq2 t=It=I
14 13 ineq2d t=IIt=II
15 14 eqeq1d t=IIt=II=
16 12 15 rspc2v 𝒫B𝒫Bs𝒫Bt𝒫Bst=IsIt=II=
17 2 2 16 mp2an s𝒫Bt𝒫Bst=IsIt=II=
18 1 17 eqtr3id s𝒫Bt𝒫Bst=IsIt=I=