Metamath Proof Explorer


Theorem ntrneinex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the neighborhood function exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneinex φ N 𝒫 𝒫 B B

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneif1o φ F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
5 f1orel F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B Rel F
6 4 5 syl φ Rel F
7 relelrn Rel F I F N N ran F
8 6 3 7 syl2anc φ N ran F
9 dff1o2 F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B F Fn 𝒫 B 𝒫 B Fun F -1 ran F = 𝒫 𝒫 B B
10 4 9 sylib φ F Fn 𝒫 B 𝒫 B Fun F -1 ran F = 𝒫 𝒫 B B
11 10 simp3d φ ran F = 𝒫 𝒫 B B
12 8 11 eleqtrd φ N 𝒫 𝒫 B B