Metamath Proof Explorer


Theorem ntrneinex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the neighborhood function exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneinex φN𝒫𝒫BB

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 1 2 3 ntrneif1o φF:𝒫B𝒫B1-1 onto𝒫𝒫BB
5 f1orel F:𝒫B𝒫B1-1 onto𝒫𝒫BBRelF
6 4 5 syl φRelF
7 relelrn RelFIFNNranF
8 6 3 7 syl2anc φNranF
9 dff1o2 F:𝒫B𝒫B1-1 onto𝒫𝒫BBFFn𝒫B𝒫BFunF-1ranF=𝒫𝒫BB
10 4 9 sylib φFFn𝒫B𝒫BFunF-1ranF=𝒫𝒫BB
11 10 simp3d φranF=𝒫𝒫BB
12 8 11 eleqtrd φN𝒫𝒫BB