Metamath Proof Explorer


Theorem ntrval

Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis iscld.1 X=J
Assertion ntrval JTopSXintJS=J𝒫S

Proof

Step Hyp Ref Expression
1 iscld.1 X=J
2 1 ntrfval JTopintJ=x𝒫XJ𝒫x
3 2 fveq1d JTopintJS=x𝒫XJ𝒫xS
4 3 adantr JTopSXintJS=x𝒫XJ𝒫xS
5 eqid x𝒫XJ𝒫x=x𝒫XJ𝒫x
6 pweq x=S𝒫x=𝒫S
7 6 ineq2d x=SJ𝒫x=J𝒫S
8 7 unieqd x=SJ𝒫x=J𝒫S
9 1 topopn JTopXJ
10 elpw2g XJS𝒫XSX
11 9 10 syl JTopS𝒫XSX
12 11 biimpar JTopSXS𝒫X
13 inex1g JTopJ𝒫SV
14 13 adantr JTopSXJ𝒫SV
15 14 uniexd JTopSXJ𝒫SV
16 5 8 12 15 fvmptd3 JTopSXx𝒫XJ𝒫xS=J𝒫S
17 4 16 eqtrd JTopSXintJS=J𝒫S