Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscld.1 | |
|
Assertion | ntrval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | |
|
2 | 1 | ntrfval | |
3 | 2 | fveq1d | |
4 | 3 | adantr | |
5 | eqid | |
|
6 | pweq | |
|
7 | 6 | ineq2d | |
8 | 7 | unieqd | |
9 | 1 | topopn | |
10 | elpw2g | |
|
11 | 9 10 | syl | |
12 | 11 | biimpar | |
13 | inex1g | |
|
14 | 13 | adantr | |
15 | 14 | uniexd | |
16 | 5 8 12 15 | fvmptd3 | |
17 | 4 16 | eqtrd | |