Metamath Proof Explorer


Theorem nv0

Description: Zero times a vector is the zero vector. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nv0.1 X=BaseSetU
nv0.4 S=𝑠OLDU
nv0.6 Z=0vecU
Assertion nv0 UNrmCVecAX0SA=Z

Proof

Step Hyp Ref Expression
1 nv0.1 X=BaseSetU
2 nv0.4 S=𝑠OLDU
3 nv0.6 Z=0vecU
4 eqid 1stU=1stU
5 4 nvvc UNrmCVec1stUCVecOLD
6 eqid +vU=+vU
7 6 vafval +vU=1st1stU
8 2 smfval S=2nd1stU
9 1 6 bafval X=ran+vU
10 eqid GId+vU=GId+vU
11 7 8 9 10 vc0 1stUCVecOLDAX0SA=GId+vU
12 5 11 sylan UNrmCVecAX0SA=GId+vU
13 6 3 0vfval UNrmCVecZ=GId+vU
14 13 adantr UNrmCVecAXZ=GId+vU
15 12 14 eqtr4d UNrmCVecAX0SA=Z