Metamath Proof Explorer


Theorem nvgt0

Description: A nonzero norm is positive. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgt0.1 X=BaseSetU
nvgt0.5 Z=0vecU
nvgt0.6 N=normCVU
Assertion nvgt0 UNrmCVecAXAZ0<NA

Proof

Step Hyp Ref Expression
1 nvgt0.1 X=BaseSetU
2 nvgt0.5 Z=0vecU
3 nvgt0.6 N=normCVU
4 1 2 3 nvz UNrmCVecAXNA=0A=Z
5 4 necon3bid UNrmCVecAXNA0AZ
6 1 3 nvcl UNrmCVecAXNA
7 1 3 nvge0 UNrmCVecAX0NA
8 ne0gt0 NA0NANA00<NA
9 6 7 8 syl2anc UNrmCVecAXNA00<NA
10 5 9 bitr3d UNrmCVecAXAZ0<NA