Metamath Proof Explorer


Theorem nznngen

Description: All positive integers in the set of multiples ofn, nℤ, are the absolute value ofn or greater. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypothesis nznngen.n φ N
Assertion nznngen φ N N

Proof

Step Hyp Ref Expression
1 nznngen.n φ N
2 reldvds Rel
3 relimasn Rel N = x | N x
4 2 3 ax-mp N = x | N x
5 4 ineq1i N = x | N x
6 dfrab2 x | N x = x | N x
7 5 6 eqtr4i N = x | N x
8 7 eleq2i x N x x | N x
9 rabid x x | N x x N x
10 nnz x x
11 absdvdsb N x N x N x
12 1 10 11 syl2an φ x N x N x
13 zabscl N N
14 1 13 syl φ N
15 dvdsle N x N x N x
16 14 15 sylan φ x N x N x
17 12 16 sylbid φ x N x N x
18 17 impr φ x N x N x
19 9 18 sylan2b φ x x | N x N x
20 9 simplbi x x | N x x
21 20 nnzd x x | N x x
22 eluz N x x N N x
23 14 21 22 syl2an φ x x | N x x N N x
24 19 23 mpbird φ x x | N x x N
25 8 24 sylan2b φ x N x N
26 25 ex φ x N x N
27 26 ssrdv φ N N