| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nznngen.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | reldvds | ⊢ Rel   ∥ | 
						
							| 3 |  | relimasn | ⊢ ( Rel   ∥   →  (  ∥   “  { 𝑁 } )  =  { 𝑥  ∣  𝑁  ∥  𝑥 } ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ (  ∥   “  { 𝑁 } )  =  { 𝑥  ∣  𝑁  ∥  𝑥 } | 
						
							| 5 | 4 | ineq1i | ⊢ ( (  ∥   “  { 𝑁 } )  ∩  ℕ )  =  ( { 𝑥  ∣  𝑁  ∥  𝑥 }  ∩  ℕ ) | 
						
							| 6 |  | dfrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 }  =  ( { 𝑥  ∣  𝑁  ∥  𝑥 }  ∩  ℕ ) | 
						
							| 7 | 5 6 | eqtr4i | ⊢ ( (  ∥   “  { 𝑁 } )  ∩  ℕ )  =  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 } | 
						
							| 8 | 7 | eleq2i | ⊢ ( 𝑥  ∈  ( (  ∥   “  { 𝑁 } )  ∩  ℕ )  ↔  𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 } ) | 
						
							| 9 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 }  ↔  ( 𝑥  ∈  ℕ  ∧  𝑁  ∥  𝑥 ) ) | 
						
							| 10 |  | nnz | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℤ ) | 
						
							| 11 |  | absdvdsb | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝑁  ∥  𝑥  ↔  ( abs ‘ 𝑁 )  ∥  𝑥 ) ) | 
						
							| 12 | 1 10 11 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 𝑁  ∥  𝑥  ↔  ( abs ‘ 𝑁 )  ∥  𝑥 ) ) | 
						
							| 13 |  | zabscl | ⊢ ( 𝑁  ∈  ℤ  →  ( abs ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  ( abs ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 15 |  | dvdsle | ⊢ ( ( ( abs ‘ 𝑁 )  ∈  ℤ  ∧  𝑥  ∈  ℕ )  →  ( ( abs ‘ 𝑁 )  ∥  𝑥  →  ( abs ‘ 𝑁 )  ≤  𝑥 ) ) | 
						
							| 16 | 14 15 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( ( abs ‘ 𝑁 )  ∥  𝑥  →  ( abs ‘ 𝑁 )  ≤  𝑥 ) ) | 
						
							| 17 | 12 16 | sylbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 𝑁  ∥  𝑥  →  ( abs ‘ 𝑁 )  ≤  𝑥 ) ) | 
						
							| 18 | 17 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ  ∧  𝑁  ∥  𝑥 ) )  →  ( abs ‘ 𝑁 )  ≤  𝑥 ) | 
						
							| 19 | 9 18 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 } )  →  ( abs ‘ 𝑁 )  ≤  𝑥 ) | 
						
							| 20 | 9 | simplbi | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 }  →  𝑥  ∈  ℕ ) | 
						
							| 21 | 20 | nnzd | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 }  →  𝑥  ∈  ℤ ) | 
						
							| 22 |  | eluz | ⊢ ( ( ( abs ‘ 𝑁 )  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑁 ) )  ↔  ( abs ‘ 𝑁 )  ≤  𝑥 ) ) | 
						
							| 23 | 14 21 22 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 } )  →  ( 𝑥  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑁 ) )  ↔  ( abs ‘ 𝑁 )  ≤  𝑥 ) ) | 
						
							| 24 | 19 23 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝑁  ∥  𝑥 } )  →  𝑥  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) | 
						
							| 25 | 8 24 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( (  ∥   “  { 𝑁 } )  ∩  ℕ ) )  →  𝑥  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( (  ∥   “  { 𝑁 } )  ∩  ℕ )  →  𝑥  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) ) | 
						
							| 27 | 26 | ssrdv | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑁 } )  ∩  ℕ )  ⊆  ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) |