Metamath Proof Explorer


Theorem o1mul

Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Fan Zheng, 14-Jul-2016)

Ref Expression
Assertion o1mul F𝑂1G𝑂1F×fG𝑂1

Proof

Step Hyp Ref Expression
1 remulcl mnmn
2 mulcl xyxy
3 simp2l mnxyxmynx
4 simp2r mnxyxmyny
5 3 4 absmuld mnxyxmynxy=xy
6 3 abscld mnxyxmynx
7 simp1l mnxyxmynm
8 4 abscld mnxyxmyny
9 simp1r mnxyxmynn
10 3 absge0d mnxyxmyn0x
11 4 absge0d mnxyxmyn0y
12 simp3l mnxyxmynxm
13 simp3r mnxyxmynyn
14 6 7 8 9 10 11 12 13 lemul12ad mnxyxmynxymn
15 5 14 eqbrtrd mnxyxmynxymn
16 15 3expia mnxyxmynxymn
17 1 2 16 o1of2 F𝑂1G𝑂1F×fG𝑂1