Metamath Proof Explorer


Theorem oaltom

Description: Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion oaltom AOnBOn1𝑜AABB+𝑜AB𝑜A

Proof

Step Hyp Ref Expression
1 om2 BOnB+𝑜B=B𝑜2𝑜
2 1 ad2antlr AOnBOn1𝑜AABB+𝑜B=B𝑜2𝑜
3 2on 2𝑜On
4 3 a1i AOnBOn2𝑜On
5 simpl AOnBOnAOn
6 simpr AOnBOnBOn
7 4 5 6 3jca AOnBOn2𝑜OnAOnBOn
8 7 adantr AOnBOn1𝑜AAB2𝑜OnAOnBOn
9 df-2o 2𝑜=suc1𝑜
10 9 a1i AOnBOn1𝑜AAB2𝑜=suc1𝑜
11 simprl AOnBOn1𝑜AAB1𝑜A
12 eloni AOnOrdA
13 12 adantr AOnBOnOrdA
14 13 adantr AOnBOn1𝑜AABOrdA
15 11 14 jca AOnBOn1𝑜AAB1𝑜AOrdA
16 ordelsuc 1𝑜AOrdA1𝑜Asuc1𝑜A
17 16 biimpd 1𝑜AOrdA1𝑜Asuc1𝑜A
18 15 11 17 sylc AOnBOn1𝑜AABsuc1𝑜A
19 10 18 eqsstrd AOnBOn1𝑜AAB2𝑜A
20 omwordi 2𝑜OnAOnBOn2𝑜AB𝑜2𝑜B𝑜A
21 8 19 20 sylc AOnBOn1𝑜AABB𝑜2𝑜B𝑜A
22 2 21 eqsstrd AOnBOn1𝑜AABB+𝑜BB𝑜A
23 6 6 jca AOnBOnBOnBOn
24 simpr 1𝑜AABAB
25 oaordi BOnBOnABB+𝑜AB+𝑜B
26 25 imp BOnBOnABB+𝑜AB+𝑜B
27 23 24 26 syl2an AOnBOn1𝑜AABB+𝑜AB+𝑜B
28 22 27 sseldd AOnBOn1𝑜AABB+𝑜AB𝑜A
29 28 ex AOnBOn1𝑜AABB+𝑜AB𝑜A