Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of A is equal to B . This is a specialization of oawordex . (Contributed by RP, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | naddwordnex.a | |
|
naddwordnex.b | |
||
naddwordnex.c | |
||
naddwordnex.d | |
||
naddwordnex.m | |
||
naddwordnex.n | |
||
Assertion | oawordex3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddwordnex.a | |
|
2 | naddwordnex.b | |
|
3 | naddwordnex.c | |
|
4 | naddwordnex.d | |
|
5 | naddwordnex.m | |
|
6 | naddwordnex.n | |
|
7 | 1 2 3 4 5 6 | naddwordnexlem1 | |
8 | omelon | |
|
9 | 8 | a1i | |
10 | onelon | |
|
11 | 4 3 10 | syl2anc | |
12 | omcl | |
|
13 | 9 11 12 | syl2anc | |
14 | nnon | |
|
15 | 5 14 | syl | |
16 | oacl | |
|
17 | 13 15 16 | syl2anc | |
18 | 1 17 | eqeltrd | |
19 | omcl | |
|
20 | 9 4 19 | syl2anc | |
21 | 6 5 | jca | |
22 | ontr1 | |
|
23 | 9 21 22 | sylc | |
24 | nnon | |
|
25 | 23 24 | syl | |
26 | oacl | |
|
27 | 20 25 26 | syl2anc | |
28 | 2 27 | eqeltrd | |
29 | oawordex | |
|
30 | 18 28 29 | syl2anc | |
31 | 7 30 | mpbid | |