Metamath Proof Explorer


Theorem oawordex3

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of A is equal to B . This is a specialization of oawordex . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φA=ω𝑜C+𝑜M
naddwordnex.b φB=ω𝑜D+𝑜N
naddwordnex.c φCD
naddwordnex.d φDOn
naddwordnex.m φMω
naddwordnex.n φNM
Assertion oawordex3 φxOnA+𝑜x=B

Proof

Step Hyp Ref Expression
1 naddwordnex.a φA=ω𝑜C+𝑜M
2 naddwordnex.b φB=ω𝑜D+𝑜N
3 naddwordnex.c φCD
4 naddwordnex.d φDOn
5 naddwordnex.m φMω
6 naddwordnex.n φNM
7 1 2 3 4 5 6 naddwordnexlem1 φAB
8 omelon ωOn
9 8 a1i φωOn
10 onelon DOnCDCOn
11 4 3 10 syl2anc φCOn
12 omcl ωOnCOnω𝑜COn
13 9 11 12 syl2anc φω𝑜COn
14 nnon MωMOn
15 5 14 syl φMOn
16 oacl ω𝑜COnMOnω𝑜C+𝑜MOn
17 13 15 16 syl2anc φω𝑜C+𝑜MOn
18 1 17 eqeltrd φAOn
19 omcl ωOnDOnω𝑜DOn
20 9 4 19 syl2anc φω𝑜DOn
21 6 5 jca φNMMω
22 ontr1 ωOnNMMωNω
23 9 21 22 sylc φNω
24 nnon NωNOn
25 23 24 syl φNOn
26 oacl ω𝑜DOnNOnω𝑜D+𝑜NOn
27 20 25 26 syl2anc φω𝑜D+𝑜NOn
28 2 27 eqeltrd φBOn
29 oawordex AOnBOnABxOnA+𝑜x=B
30 18 28 29 syl2anc φABxOnA+𝑜x=B
31 7 30 mpbid φxOnA+𝑜x=B