Metamath Proof Explorer


Theorem oawordex3

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of A is equal to B . This is a specialization of oawordex . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
naddwordnex.c φ C D
naddwordnex.d φ D On
naddwordnex.m φ M ω
naddwordnex.n φ N M
Assertion oawordex3 φ x On A + 𝑜 x = B

Proof

Step Hyp Ref Expression
1 naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
2 naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
3 naddwordnex.c φ C D
4 naddwordnex.d φ D On
5 naddwordnex.m φ M ω
6 naddwordnex.n φ N M
7 1 2 3 4 5 6 naddwordnexlem1 φ A B
8 omelon ω On
9 8 a1i φ ω On
10 onelon D On C D C On
11 4 3 10 syl2anc φ C On
12 omcl ω On C On ω 𝑜 C On
13 9 11 12 syl2anc φ ω 𝑜 C On
14 nnon M ω M On
15 5 14 syl φ M On
16 oacl ω 𝑜 C On M On ω 𝑜 C + 𝑜 M On
17 13 15 16 syl2anc φ ω 𝑜 C + 𝑜 M On
18 1 17 eqeltrd φ A On
19 omcl ω On D On ω 𝑜 D On
20 9 4 19 syl2anc φ ω 𝑜 D On
21 6 5 jca φ N M M ω
22 ontr1 ω On N M M ω N ω
23 9 21 22 sylc φ N ω
24 nnon N ω N On
25 23 24 syl φ N On
26 oacl ω 𝑜 D On N On ω 𝑜 D + 𝑜 N On
27 20 25 26 syl2anc φ ω 𝑜 D + 𝑜 N On
28 2 27 eqeltrd φ B On
29 oawordex A On B On A B x On A + 𝑜 x = B
30 18 28 29 syl2anc φ A B x On A + 𝑜 x = B
31 7 30 mpbid φ x On A + 𝑜 x = B