Metamath Proof Explorer


Theorem odd2prm2

Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion odd2prm2 NOddPQN=P+QP=2Q=2

Proof

Step Hyp Ref Expression
1 eleq1 N=P+QNOddP+QOdd
2 evennodd P+QEven¬P+QOdd
3 2 pm2.21d P+QEvenP+QOddP=2Q=2
4 df-ne P2¬P=2
5 eldifsn P2PP2
6 oddprmALTV P2POdd
7 5 6 sylbir PP2POdd
8 7 ex PP2POdd
9 4 8 biimtrrid P¬P=2POdd
10 df-ne Q2¬Q=2
11 eldifsn Q2QQ2
12 oddprmALTV Q2QOdd
13 11 12 sylbir QQ2QOdd
14 13 ex QQ2QOdd
15 10 14 biimtrrid Q¬Q=2QOdd
16 9 15 im2anan9 PQ¬P=2¬Q=2POddQOdd
17 16 imp PQ¬P=2¬Q=2POddQOdd
18 opoeALTV POddQOddP+QEven
19 17 18 syl PQ¬P=2¬Q=2P+QEven
20 3 19 syl11 P+QOddPQ¬P=2¬Q=2P=2Q=2
21 20 expd P+QOddPQ¬P=2¬Q=2P=2Q=2
22 1 21 syl6bi N=P+QNOddPQ¬P=2¬Q=2P=2Q=2
23 22 3imp231 NOddPQN=P+Q¬P=2¬Q=2P=2Q=2
24 23 com12 ¬P=2¬Q=2NOddPQN=P+QP=2Q=2
25 24 ex ¬P=2¬Q=2NOddPQN=P+QP=2Q=2
26 orc P=2P=2Q=2
27 26 a1d P=2NOddPQN=P+QP=2Q=2
28 olc Q=2P=2Q=2
29 28 a1d Q=2NOddPQN=P+QP=2Q=2
30 25 27 29 pm2.61ii NOddPQN=P+QP=2Q=2