Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oddinmgm.e | ||
| oddinmgm.r | |||
| Assertion | oddibas |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddinmgm.e | ||
| 2 | oddinmgm.r | ||
| 3 | ssrab2 | ||
| 4 | 1 3 | eqsstri | |
| 5 | zsscn | ||
| 6 | 4 5 | sstri | |
| 7 | 2 | cnfldsrngbas | |
| 8 | 6 7 | ax-mp |