Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015) (Proof shortened by AV, 10-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | oddprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi | |
|
2 | prmz | |
|
3 | 1 2 | syl | |
4 | eldifsni | |
|
5 | 4 | necomd | |
6 | 5 | neneqd | |
7 | 2z | |
|
8 | uzid | |
|
9 | 7 8 | ax-mp | |
10 | dvdsprm | |
|
11 | 9 1 10 | sylancr | |
12 | 6 11 | mtbird | |
13 | 1z | |
|
14 | n2dvds1 | |
|
15 | omoe | |
|
16 | 13 14 15 | mpanr12 | |
17 | 3 12 16 | syl2anc | |
18 | prmnn | |
|
19 | nnm1nn0 | |
|
20 | 1 18 19 | 3syl | |
21 | nn0z | |
|
22 | evend2 | |
|
23 | 20 21 22 | 3syl | |
24 | 17 23 | mpbid | |
25 | prmuz2 | |
|
26 | uz2m1nn | |
|
27 | nngt0 | |
|
28 | nnre | |
|
29 | 2rp | |
|
30 | 29 | a1i | |
31 | 28 30 | gt0divd | |
32 | 27 31 | mpbid | |
33 | 1 25 26 32 | 4syl | |
34 | elnnz | |
|
35 | 24 33 34 | sylanbrc | |