Metamath Proof Explorer


Theorem odmulg2

Description: The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X=BaseG
odmulgid.2 O=odG
odmulgid.3 ·˙=G
Assertion odmulg2 GGrpAXNON·˙AOA

Proof

Step Hyp Ref Expression
1 odmulgid.1 X=BaseG
2 odmulgid.2 O=odG
3 odmulgid.3 ·˙=G
4 1 2 odcl AXOA0
5 4 nn0zd AXOA
6 5 3ad2ant2 GGrpAXNOA
7 simp3 GGrpAXNN
8 dvdsmul1 OANOAOA N
9 6 7 8 syl2anc GGrpAXNOAOA N
10 1 2 3 odmulgid GGrpAXNOAON·˙AOAOAOA N
11 6 10 mpdan GGrpAXNON·˙AOAOAOA N
12 9 11 mpbird GGrpAXNON·˙AOA