Description: The order of any group element is a divisor of the Euler phi function. (Contributed by Mario Carneiro, 28-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | odzphi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerth | |
|
2 | simp1 | |
|
3 | simp2 | |
|
4 | 2 | phicld | |
5 | 4 | nnnn0d | |
6 | zexpcl | |
|
7 | 3 5 6 | syl2anc | |
8 | 1zzd | |
|
9 | moddvds | |
|
10 | 2 7 8 9 | syl3anc | |
11 | 1 10 | mpbid | |
12 | odzdvds | |
|
13 | 5 12 | mpdan | |
14 | 11 13 | mpbid | |