Metamath Proof Explorer


Theorem odzphi

Description: The order of any group element is a divisor of the Euler phi function. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzphi NAAgcdN=1odNAϕN

Proof

Step Hyp Ref Expression
1 eulerth NAAgcdN=1AϕNmodN=1modN
2 simp1 NAAgcdN=1N
3 simp2 NAAgcdN=1A
4 2 phicld NAAgcdN=1ϕN
5 4 nnnn0d NAAgcdN=1ϕN0
6 zexpcl AϕN0AϕN
7 3 5 6 syl2anc NAAgcdN=1AϕN
8 1zzd NAAgcdN=11
9 moddvds NAϕN1AϕNmodN=1modNNAϕN1
10 2 7 8 9 syl3anc NAAgcdN=1AϕNmodN=1modNNAϕN1
11 1 10 mpbid NAAgcdN=1NAϕN1
12 odzdvds NAAgcdN=1ϕN0NAϕN1odNAϕN
13 5 12 mpdan NAAgcdN=1NAϕN1odNAϕN
14 11 13 mpbid NAAgcdN=1odNAϕN