Metamath Proof Explorer


Theorem oeeu

Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015)

Ref Expression
Assertion oeeu AOn2𝑜BOn1𝑜∃!wxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B

Proof

Step Hyp Ref Expression
1 eqid aOn|BA𝑜a=aOn|BA𝑜a
2 1 oeeulem AOn2𝑜BOn1𝑜aOn|BA𝑜aOnA𝑜aOn|BA𝑜aBBA𝑜sucaOn|BA𝑜a
3 2 simp1d AOn2𝑜BOn1𝑜aOn|BA𝑜aOn
4 fvexd AOn2𝑜BOn1𝑜1stιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=BV
5 fvexd AOn2𝑜BOn1𝑜2ndιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=BV
6 eqid ιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B=ιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B
7 eqid 1stιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B=1stιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B
8 eqid 2ndιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B=2ndιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B
9 1 6 7 8 oeeui AOn2𝑜BOn1𝑜xOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=Bx=aOn|BA𝑜ay=1stιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=Bz=2ndιd|bOncA𝑜aOn|BA𝑜ad=bcA𝑜aOn|BA𝑜a𝑜b+𝑜c=B
10 3 4 5 9 euotd AOn2𝑜BOn1𝑜∃!wxyzw=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=B
11 df-3an xOnyA1𝑜zA𝑜xxOnyA1𝑜zA𝑜x
12 11 biancomi xOnyA1𝑜zA𝑜xzA𝑜xxOnyA1𝑜
13 12 anbi1i xOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=BzA𝑜xxOnyA1𝑜A𝑜x𝑜y+𝑜z=B
14 13 anbi2i w=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=Bw=xyzzA𝑜xxOnyA1𝑜A𝑜x𝑜y+𝑜z=B
15 an12 w=xyzzA𝑜xxOnyA1𝑜A𝑜x𝑜y+𝑜z=BzA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=B
16 anass zA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=BzA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=B
17 14 15 16 3bitri w=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=BzA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=B
18 17 exbii zw=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=BzzA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=B
19 df-rex zA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=BzzA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=B
20 r19.42v zA𝑜xxOnyA1𝑜w=xyzA𝑜x𝑜y+𝑜z=BxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B
21 18 19 20 3bitr2i zw=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=BxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B
22 21 2exbii xyzw=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=BxyxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B
23 r2ex xOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=BxyxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B
24 22 23 bitr4i xyzw=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=BxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B
25 24 eubii ∃!wxyzw=xyzxOnyA1𝑜zA𝑜xA𝑜x𝑜y+𝑜z=B∃!wxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B
26 10 25 sylib AOn2𝑜BOn1𝑜∃!wxOnyA1𝑜zA𝑜xw=xyzA𝑜x𝑜y+𝑜z=B