Metamath Proof Explorer


Theorem oenass

Description: Ordinal exponentiation is not associative. Remark 4.6 of Schloeder p. 14. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenass aOnbOncOn¬a𝑜b𝑜c=a𝑜b𝑜c

Proof

Step Hyp Ref Expression
1 oenassex ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜
2 2on 2𝑜On
3 0elon On
4 oveq2 c=2𝑜𝑜c=2𝑜𝑜
5 4 oveq2d c=2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜
6 oveq2 c=2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜
7 5 6 eqeq12d c=2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜
8 7 notbid c=¬2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜
9 8 rspcev On¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜cOn¬2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c
10 3 9 mpan ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜cOn¬2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c
11 oveq1 b=2𝑜b𝑜c=2𝑜𝑜c
12 11 oveq2d b=2𝑜2𝑜𝑜b𝑜c=2𝑜𝑜2𝑜𝑜c
13 oveq2 b=2𝑜2𝑜𝑜b=2𝑜𝑜2𝑜
14 13 oveq1d b=2𝑜2𝑜𝑜b𝑜c=2𝑜𝑜2𝑜𝑜c
15 12 14 eqeq12d b=2𝑜2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c
16 15 notbid b=2𝑜¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c¬2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c
17 16 rexbidv b=2𝑜cOn¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜ccOn¬2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜c
18 17 rspcev 2𝑜OncOn¬2𝑜𝑜2𝑜𝑜c=2𝑜𝑜2𝑜𝑜cbOncOn¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c
19 2 10 18 sylancr ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜bOncOn¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c
20 oveq1 a=2𝑜a𝑜b𝑜c=2𝑜𝑜b𝑜c
21 oveq1 a=2𝑜a𝑜b=2𝑜𝑜b
22 21 oveq1d a=2𝑜a𝑜b𝑜c=2𝑜𝑜b𝑜c
23 20 22 eqeq12d a=2𝑜a𝑜b𝑜c=a𝑜b𝑜c2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c
24 23 notbid a=2𝑜¬a𝑜b𝑜c=a𝑜b𝑜c¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c
25 24 rexbidv a=2𝑜cOn¬a𝑜b𝑜c=a𝑜b𝑜ccOn¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c
26 25 rexbidv a=2𝑜bOncOn¬a𝑜b𝑜c=a𝑜b𝑜cbOncOn¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜c
27 26 rspcev 2𝑜OnbOncOn¬2𝑜𝑜b𝑜c=2𝑜𝑜b𝑜caOnbOncOn¬a𝑜b𝑜c=a𝑜b𝑜c
28 2 19 27 sylancr ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜aOnbOncOn¬a𝑜b𝑜c=a𝑜b𝑜c
29 1 28 ax-mp aOnbOncOn¬a𝑜b𝑜c=a𝑜b𝑜c