Metamath Proof Explorer


Theorem ofc1

Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses ofc1.1 φAV
ofc1.2 φBW
ofc1.3 φFFnA
ofc1.4 φXAFX=C
Assertion ofc1 φXAA×BRfFX=BRC

Proof

Step Hyp Ref Expression
1 ofc1.1 φAV
2 ofc1.2 φBW
3 ofc1.3 φFFnA
4 ofc1.4 φXAFX=C
5 fnconstg BWA×BFnA
6 2 5 syl φA×BFnA
7 inidm AA=A
8 fvconst2g BWXAA×BX=B
9 2 8 sylan φXAA×BX=B
10 6 3 1 1 7 9 4 ofval φXAA×BRfFX=BRC