Metamath Proof Explorer


Theorem olj01

Description: An ortholattice element joined with zero equals itself. ( chj0 analog.) (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses olj0.b B = Base K
olj0.j ˙ = join K
olj0.z 0 ˙ = 0. K
Assertion olj01 K OL X B X ˙ 0 ˙ = X

Proof

Step Hyp Ref Expression
1 olj0.b B = Base K
2 olj0.j ˙ = join K
3 olj0.z 0 ˙ = 0. K
4 olop K OL K OP
5 1 3 op0cl K OP 0 ˙ B
6 4 5 syl K OL 0 ˙ B
7 6 adantr K OL X B 0 ˙ B
8 eqid K = K
9 ollat K OL K Lat
10 9 3ad2ant1 K OL X B 0 ˙ B K Lat
11 1 2 latjcl K Lat X B 0 ˙ B X ˙ 0 ˙ B
12 9 11 syl3an1 K OL X B 0 ˙ B X ˙ 0 ˙ B
13 simp2 K OL X B 0 ˙ B X B
14 1 8 latref K Lat X B X K X
15 9 14 sylan K OL X B X K X
16 15 3adant3 K OL X B 0 ˙ B X K X
17 1 8 3 op0le K OP X B 0 ˙ K X
18 4 17 sylan K OL X B 0 ˙ K X
19 18 3adant3 K OL X B 0 ˙ B 0 ˙ K X
20 simp3 K OL X B 0 ˙ B 0 ˙ B
21 1 8 2 latjle12 K Lat X B 0 ˙ B X B X K X 0 ˙ K X X ˙ 0 ˙ K X
22 10 13 20 13 21 syl13anc K OL X B 0 ˙ B X K X 0 ˙ K X X ˙ 0 ˙ K X
23 16 19 22 mpbi2and K OL X B 0 ˙ B X ˙ 0 ˙ K X
24 1 8 2 latlej1 K Lat X B 0 ˙ B X K X ˙ 0 ˙
25 9 24 syl3an1 K OL X B 0 ˙ B X K X ˙ 0 ˙
26 1 8 10 12 13 23 25 latasymd K OL X B 0 ˙ B X ˙ 0 ˙ = X
27 7 26 mpd3an3 K OL X B X ˙ 0 ˙ = X