Metamath Proof Explorer


Theorem olj01

Description: An ortholattice element joined with zero equals itself. ( chj0 analog.) (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses olj0.b B=BaseK
olj0.j ˙=joinK
olj0.z 0˙=0.K
Assertion olj01 KOLXBX˙0˙=X

Proof

Step Hyp Ref Expression
1 olj0.b B=BaseK
2 olj0.j ˙=joinK
3 olj0.z 0˙=0.K
4 olop KOLKOP
5 1 3 op0cl KOP0˙B
6 4 5 syl KOL0˙B
7 6 adantr KOLXB0˙B
8 eqid K=K
9 ollat KOLKLat
10 9 3ad2ant1 KOLXB0˙BKLat
11 1 2 latjcl KLatXB0˙BX˙0˙B
12 9 11 syl3an1 KOLXB0˙BX˙0˙B
13 simp2 KOLXB0˙BXB
14 1 8 latref KLatXBXKX
15 9 14 sylan KOLXBXKX
16 15 3adant3 KOLXB0˙BXKX
17 1 8 3 op0le KOPXB0˙KX
18 4 17 sylan KOLXB0˙KX
19 18 3adant3 KOLXB0˙B0˙KX
20 simp3 KOLXB0˙B0˙B
21 1 8 2 latjle12 KLatXB0˙BXBXKX0˙KXX˙0˙KX
22 10 13 20 13 21 syl13anc KOLXB0˙BXKX0˙KXX˙0˙KX
23 16 19 22 mpbi2and KOLXB0˙BX˙0˙KX
24 1 8 2 latlej1 KLatXB0˙BXKX˙0˙
25 9 24 syl3an1 KOLXB0˙BXKX˙0˙
26 1 8 10 12 13 23 25 latasymd KOLXB0˙BX˙0˙=X
27 7 26 mpd3an3 KOLXBX˙0˙=X