Metamath Proof Explorer


Theorem olm11

Description: The meet of an ortholattice element with one equals itself. ( chm1i analog.) (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses olm1.b B=BaseK
olm1.m ˙=meetK
olm1.u 1˙=1.K
Assertion olm11 KOLXBX˙1˙=X

Proof

Step Hyp Ref Expression
1 olm1.b B=BaseK
2 olm1.m ˙=meetK
3 olm1.u 1˙=1.K
4 olop KOLKOP
5 4 adantr KOLXBKOP
6 eqid 0.K=0.K
7 eqid ocK=ocK
8 6 3 7 opoc1 KOPocK1˙=0.K
9 5 8 syl KOLXBocK1˙=0.K
10 9 oveq2d KOLXBocKXjoinKocK1˙=ocKXjoinK0.K
11 1 7 opoccl KOPXBocKXB
12 4 11 sylan KOLXBocKXB
13 eqid joinK=joinK
14 1 13 6 olj01 KOLocKXBocKXjoinK0.K=ocKX
15 12 14 syldan KOLXBocKXjoinK0.K=ocKX
16 10 15 eqtrd KOLXBocKXjoinKocK1˙=ocKX
17 16 fveq2d KOLXBocKocKXjoinKocK1˙=ocKocKX
18 1 3 op1cl KOP1˙B
19 5 18 syl KOLXB1˙B
20 1 13 2 7 oldmj4 KOLXB1˙BocKocKXjoinKocK1˙=X˙1˙
21 19 20 mpd3an3 KOLXBocKocKXjoinKocK1˙=X˙1˙
22 1 7 opococ KOPXBocKocKX=X
23 4 22 sylan KOLXBocKocKX=X
24 17 21 23 3eqtr3d KOLXBX˙1˙=X