Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of TakeutiZaring p. 64. (Contributed by NM, 21-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | om00 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neanior | |
|
2 | eloni | |
|
3 | ordge1n0 | |
|
4 | 2 3 | syl | |
5 | 4 | biimprd | |
6 | 5 | adantr | |
7 | on0eln0 | |
|
8 | 7 | adantl | |
9 | omword1 | |
|
10 | 9 | ex | |
11 | 8 10 | sylbird | |
12 | 6 11 | anim12d | |
13 | sstr | |
|
14 | 12 13 | syl6 | |
15 | 1 14 | biimtrrid | |
16 | omcl | |
|
17 | eloni | |
|
18 | ordge1n0 | |
|
19 | 16 17 18 | 3syl | |
20 | 15 19 | sylibd | |
21 | 20 | necon4bd | |
22 | oveq1 | |
|
23 | om0r | |
|
24 | 22 23 | sylan9eqr | |
25 | 24 | ex | |
26 | 25 | adantl | |
27 | oveq2 | |
|
28 | om0 | |
|
29 | 27 28 | sylan9eqr | |
30 | 29 | ex | |
31 | 30 | adantr | |
32 | 26 31 | jaod | |
33 | 21 32 | impbid | |