Metamath Proof Explorer


Theorem om00

Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of TakeutiZaring p. 64. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion om00 AOnBOnA𝑜B=A=B=

Proof

Step Hyp Ref Expression
1 neanior AB¬A=B=
2 eloni AOnOrdA
3 ordge1n0 OrdA1𝑜AA
4 2 3 syl AOn1𝑜AA
5 4 biimprd AOnA1𝑜A
6 5 adantr AOnBOnA1𝑜A
7 on0eln0 BOnBB
8 7 adantl AOnBOnBB
9 omword1 AOnBOnBAA𝑜B
10 9 ex AOnBOnBAA𝑜B
11 8 10 sylbird AOnBOnBAA𝑜B
12 6 11 anim12d AOnBOnAB1𝑜AAA𝑜B
13 sstr 1𝑜AAA𝑜B1𝑜A𝑜B
14 12 13 syl6 AOnBOnAB1𝑜A𝑜B
15 1 14 biimtrrid AOnBOn¬A=B=1𝑜A𝑜B
16 omcl AOnBOnA𝑜BOn
17 eloni A𝑜BOnOrdA𝑜B
18 ordge1n0 OrdA𝑜B1𝑜A𝑜BA𝑜B
19 16 17 18 3syl AOnBOn1𝑜A𝑜BA𝑜B
20 15 19 sylibd AOnBOn¬A=B=A𝑜B
21 20 necon4bd AOnBOnA𝑜B=A=B=
22 oveq1 A=A𝑜B=𝑜B
23 om0r BOn𝑜B=
24 22 23 sylan9eqr BOnA=A𝑜B=
25 24 ex BOnA=A𝑜B=
26 25 adantl AOnBOnA=A𝑜B=
27 oveq2 B=A𝑜B=A𝑜
28 om0 AOnA𝑜=
29 27 28 sylan9eqr AOnB=A𝑜B=
30 29 ex AOnB=A𝑜B=
31 30 adantr AOnBOnB=A𝑜B=
32 26 31 jaod AOnBOnA=B=A𝑜B=
33 21 32 impbid AOnBOnA𝑜B=A=B=